Abstract

SUMMARYThis study presents a new kinetostatic model for humanoid robots (HRs). Screw theory, together with Assur virtual chains and Davies' method, provides the required tools for the proposal of both the kinematic and static parts of the kinetostatic model. Our kinetostatic model is able to estimate the forces and couples generated at the axes of each joint of the robot, as well as one unknown contact condition between the robot and the environment around it. The proposed model is also very versatile and free of fixed coordinates and, therefore, it allows for an estimate of a great amount of information on the HR. Some results, obtained from computer simulation, are presented to validate the versatility of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.