Abstract

Interval optimization algorithms usually use local search methods to obtain a good upper bound of the global optimal value. These local methods are based on point evaluations. A new interval-genetic algorithm is presented that combines an interval arithmetic and a genetic algorithm in the paper. The proposed algorithm uses the improved upper bound of the global optimal value obtained by the genetic algorithm to delete the intervals not containing the global optimal solution from the work set at each iteration. Using the interval arithmetic, the new algorithm not only has the advantages of simplicity and less knowledge about problems as traditional interval optimization algorithms, but also produces the reliable domains where the genetic algorithm is applied to search. Moreover, with the direction provided by the genetic algorithm applied, the chance to divide the reliable interval is increased. A convergence is proved and numerical experiments shows that the proposed algorithm is more efficient than traditional interval optimization algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.