Abstract

Abstract Based on results of 11 yr of heterogeneous ice nucleation experiments at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber in Karlsruhe, Germany, a new empirical parameterization framework for heterogeneous ice nucleation was developed. The framework currently includes desert dust and soot aerosol and quantifies the ice nucleation efficiency in terms of the ice nucleation active surface site (INAS) approach. The immersion freezing INAS densities nS of all desert dust experiments follow an exponential fit as a function of temperature, well in agreement with an earlier analysis of AIDA experiments. The deposition nucleation nS isolines for desert dust follow u-shaped curves in the ice saturation ratio–temperature (Si–T) diagram at temperatures below about 240 K. The negative slope of these isolines toward lower temperatures may be explained by classical nucleation theory (CNT), whereas the behavior toward higher temperatures may be caused by a pore condensation and freezing mechanism. The deposition nucleation measured for soot at temperatures below about 240 K also follows u-shaped isolines with a shift toward higher Si for soot with higher organic carbon content. For immersion freezing of soot aerosol, only upper limits for nS were determined and used to rescale an existing parameterization line. The new parameterization framework is compared to a CNT-based parameterization and an empirical framework as used in models. The comparison shows large differences in shape and magnitude of the nS isolines especially for deposition nucleation. For the application in models, implementation of this new framework is simple compared to that of other expressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.