Abstract

It is well known that it is difficult to explore underwater terrains using an autonomous underwater vehicle due to the varieties and complexities of underwater terrain elements. Since conventional underwater terrain coverage techniques are usually based on the assumption that the underwater surface is planar, they generate an unnecessary exploration path especially on steep sloped surfaces of ocean basins. This paper proposes a new type of coverage technique, the hybrid terrain coverage framework (HTCF), which considers various surface conditions in three-dimensional environments and generates an efficient exploration path for all environments. The HTCF incorporates a planar terrain coverage algorithm, a spiral path terrain coverage algorithm, and a hybrid decision module to recognize and select the most suitable technique depending on the sloped surface variations. Simulation results show that the proposed HTCF is more efficient than the conventional terrain coverage algorithm in terms of the energy consumption of the underwater vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.