Abstract
Tuned Sloshing Dampers (TSD) are passive devices, working based on shallow liquid sloshing in a rigid tank to suppress the horizontal structural vibrations induced by wind loading or earthquake excitations. The key parameters in design of a TSD could be referred to the natural frequency of the liquid sloshing motion and the inherent damping of the TSD during the excitation. Due to the highly nonlinear behavior of the liquid free-surface occurring in TSDs, accurate prediction of the TSD-structure’s behavior during strong excitations is highly desirable. In the current paper, Weakly Compressible form of Smoothed Particle Hydrodynamic (SPH) method is used to simulate the flow within rectangular TSDs during large movements. Characteristics of the flow such as wave height and sloshing forces acting on the container’s walls are calculated and compared with the existing experimental and numerical data. A hybrid SPH-Finite Element Method (FEM) was developed to investigate the seismic response of MDOF structures equipped with multiple TSDs. The proposed model was employed to evaluate the dynamic response of MDOF structures under severe seismic excitations with different frequency contents. The results showed that depending on the frequency content of the ground motion, having the TSDs tuned to a frequency close to the natural frequency of the structure could significantly alter the seismic response of the structures. The effectiveness of TSD is also related to the higher modes effect for MDOF structures and location of TSDs placed on the structural floors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.