Abstract

SUMMARYThe 3 degree-of-freedom Gantry-Tau manipulator with the addition of the spherical wrist mechanism which is called Gantry-Tau-3R is designed as a high-G simulation-based motion platform (SBMP) with the capability of generating the large linear and angular displacement. The combination of both parallel and serial manipulator in newly designed Gantry-Tau-3R mechanism improves the ability of the mechanism to regenerate larger motion signals with higher linear acceleration and angular velocity. The high-frequency signals are reproduced using the parallel part of the mechanism, and sustainable low-frequency accelerations are regenerated via the serial part due to the larger rotational motion capability, which will be used through motion cueing algorithm tilt coordination channel. The proportional integral derivative (PID) and fuzzy incremental controller (FIC) are developed for the proposed mechanism to show the high path tracking performance as a motion platform. FIC reduces the motion tracking error of the newly designed Gantry-Tau-3R and increases the motion fidelity for the users of the proposed SBMP. The proposed method is implemented using Matlab/Simulink software. Finally, the results demonstrate the accurate motion signal generation using linear model predictive motion cues with a fuzzy controller, which is not possible using the common parallel and serial manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.