Abstract

We present a new full-dimensional ab initio potential energy surface (PES) of a hydrogen fluoride dimer [(HF)2] using the supermolecular approach. The calculations were performed at the coupled-cluster single double triple level, with an augmented correlation-consistent polarized valence quadruple-zeta basis set plus bond functions. The basis set superposition error was corrected by a full counterpoise procedure. With the exchange symmetry of the two HF molecules, the permutation invariant polynomial neural network approach was used to fit the hypersurface with a root-mean-square-error of 0.465 cm-1 for about 110 000 points. The ab initio noise of intermolecular potential in the long range was smoothed by the long-range coefficients method. The equilibrium configuration of the complex was found to be a Cs structure located at two equivalent minima with the well depth of 1573.495 cm-1. The eigenstates were calculated by employing a symmetry-adapted Lanczos propagation algorithm in the mixed radical discrete variable representation/angular finite basis representation. The tunneling splitting for the ground state of (HF)2 is 0.665 cm-1, agreeing well with experimental value of 0.65869 cm-1. Vibrational fundamentals are also very close to the observed values. The results of vibrational states calculations demonstrate the high accuracy of our new PES.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.