Abstract

The notion of control dependence underlies many program analysis and transformation techniques. Despite wide applications, existing definitions and approaches for calculating control dependence are difficult to apply seamlessly to modern program structures. Such program structures make substantial use of exception processing and increasingly support reactive systems designed to run indefinitely. This paper revisits foundational issues surrounding control dependence and slicing. It develops definitions and algorithms for computing control dependence that can be directly applied to modern program structures. A variety of properties show that the new definitions conservatively extend classic definitions. In the context of slicing reactive systems, the paper proposes a notion of slicing correctness based on weak bisimulation and proves that the definition of control dependence generates slices that conform to this notion of correctness. The new definitions and algorithms for control dependence form the basis of a publicly available program slicer that has been implemented for full Java.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.