Abstract
In this paper a new finite element which can be used in the analysis of transverse vibrations of the plates under a moving point mass is presented. In this technique, which allows for the inclusion of inertial effects of the moving mass, the load is replaced with an equivalent finite element. By means of using the relations between nodal forces and nodal deflections of 16 DOF conforming plate element with C(1) continuity, on the one hand, and shape functions, on the other hand, mass, stiffness, and damping matrices of the new finite element are determined by the transverse inertia force, Coriolis force and centrifuge force, respectively. This method was first applied on a simply supported beam so as to provide a comparison with the previous studies in the literature, and it was proved that the results were within acceptable limits. Second, it was applied on a cantilevered plate so as to determine the dynamic response of the planer entry plate of a high-speed wood-cutting machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.