Abstract

We propose two photonic crystal structures that can be created by combining nanolithography with alternating-layer deposition. Photonic band calculations suggest that a drilled alternating-layer photonic crystal combining two-dimensional (2D) alternating multilayers and an array of vertically drilled holes may achieve a full photonic bandgap. In addition, a 3D/2D/3D cross-dimensional photonic crystal, which sandwiches a 2D photonic crystal slab between three-dimensional (3D) alternating-layer photonic crystals, should provide better vertical confinement of light than a conventional index guiding slab. Fabrication techniques based on existing technologies (electron beam lithography, bias sputtering, and low-pressure ECR etching) require very few process steps. Our preliminary fabrication suggests that, by refining these technologies, we will be able to realize photonic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.