Abstract

LmrA confers multidrug resistance to Lactococcus lactis by mediating the extrusion of antibiotics, out of the bacterial membrane, using the energy derived from ATP hydrolysis. Cooperation between the cytosolic and membrane-embedded domains plays a crucial role in regulating the transport ATPase cycle of this protein. In order to demonstrate the existence of a structural coupling required for the cross-talk between drug transport and ATP hydrolysis, we studied specifically the dynamic changes occurring in the membrane-embedded and cytosolic domains of LmrA by combining infrared linear dichroic spectrum measurements in the course of H/D exchange with Trp fluorescence quenching by a water-soluble attenuator. This new experimental approach, which is of general interest in the study of membrane proteins, detects long-range conformational changes, transmitted between the membrane-embedded and cytosolic regions of LmrA. On the one hand, nucleotide binding and hydrolysis in the cytosolic nucleotide binding domain cause a repacking of the transmembrane helices. On the other hand, drug binding to the transmembrane helices affects both the structure of the cytosolic regions and the ATPase activity of the nucleotide binding domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.