Abstract
A New Expander Mechanism of an Infrared Laser Based on Different Nanometre Quantum Dot Particles The traditional beam expander mechanism is derived from the Galilean and Kepler telescopes and the glass prism, which have been used for hundreds of years. Our experiments reveal that two different ITO quantum dots and NaYF4:Yb, Er nanometre particles mixed uniformly can be used to realize a Laser beam expander. The expander can be detected only by a CCD electronic camera. The expander of the infrared laser does not depend on a prism; it is a novel quantum mechanism. The mixed nanometre powder 0.2-1 mm-thickness wafer can expand the laser light spot by 2-4 times. Although the expanded laser light energy strength clearly decreases, it can still be detected well by the CCD camera. The new mechanism supplies a new possibility for improving infrared laser range radar finders, positioning, 3D processing and laser disc information storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nanomaterials & Molecular Nanotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.