Abstract

In this paper, a new nondestructive testing method using elastic waves for imaging possible voids or defects in concrete structures is proposed. This method integrates the point-source/point receiver scheme with the synthetic aperture focusing technique (SAFT) process to achieve the effect like scanning with a phase array system. This method also is equipped with large functioning depth because of the high-energy feature that elastic waves usually possess over traditional ultrasound. Both numerical simulations and experimental tests were carried out to explore the capabilities of this method in revealing single or multiple defects implied in a matrix material. The results from numerical simulations indicate that this method can clearly reveal the number of the voids or defects, their locations, and front-end profiles. The influence of the accuracy of the wave velocity determination on the resultant image also was evaluated in this study. Furthermore, the effects of the types of the responses to be recorded and the wavelength of the introduced waves also were evaluated so that very good resultant images may be obtained. Both the results from the numerical simulations and the experimental tests indicate that this elastic-wave-based method exhibits high potential in inspecting the defects of in-situ concrete structures by imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.