Abstract
AbstractThe experimental study on the variation law of coal fracture and stress was carried out in the laboratory and engineering fields, respectively. A multiparameter monitoring system including electromagnetic radiation and a high‐speed camera was built, and three stress paths, uniaxial compression, cyclic loading, and graded loading, were used to monitor the dynamic expansion process of surface cracks during uniaxial compression failure of coal specimens. Through the quantitative analysis of the electromagnetic radiation signal in the crack propagation process, it is found that the electromagnetic radiation and the stress change trend are consistent, and the electromagnetic radiation signal is ahead of the failure of coal‐generating rock mass 1–2 s. The surface crack changes after the peak value of electromagnetic radiation and presents a stepwise growth trend, crack length changes on the millisecond time scale, and the crack propagation speed is about 2000 mm/s. The surface cracks appear when the stress reaches a certain degree, and the propagation of the principal cracks is consistent with the failure of the specimen. The electromagnetic radiation value of the coal mass from static period to dynamic is analyzed by using electromagnetic radiation at the engineering site, and it was found that the electromagnetic radiation is consistent with the stress distribution of the mining face. Through normalization, the variation rule of electromagnetic radiation in laboratory and engineering sites is similar, but the peak value of electromagnetic radiation in engineering sites is more significant. Therefore, electromagnetic radiation has a good monitoring effect on the stress distribution and cracks propagation of underground coal mining working faces, which could guide the layout of underground drilling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.