Abstract
This paper develops a new diffusion (Diff) least mean squares (LMS) algorithm for the identification of a network of systems that have distinct parameters at each node. The mean and mean squares behavior of the Diff-LMS algorithm in the so called multitask environment is studied in order to obtain an explicit expression of the estimation bias and variance in terms of the spatial regularization (SR) parameter. An optimal SR formula for the Diff LMS algorithm is then derived via minimizing the estimation error. An approximation is made to the formula such that a new practical Diff variable SR LMS (Diff-VSR-LMS) algorithm is obtained. This paper also provides a framework for the design of other LMS-like algorithms that incorporate diffusion technology to solve multitask problems. The theoretical analysis is evaluated via computer simulations and the performance of the proposed algorithm is compared with conventional Diff LMS algorithms under the multitask environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.