Abstract

In this paper, we propose a new framework for the design of sparse finite impulse response (FIR) equalizers. We start by formulating greedy and convex-optimization-based solutions for sparse FIR linear equalizer tap vectors given a maximum allowable loss in the decision-point signal-to-noise ratio. Then, we extend our formulation to decision feedback equalizers and multiple-antenna systems. This is followed by further generalization to the channel shortening setup which is important for communication systems operating over broadband channels with long channel impulse responses. We propose a novel approach to design a sparse target impulse response. Finally, as an application of current practical interest, we consider self far-end crosstalk cancellation on vectored very high-speed digital subscriber line systems for cellular backhaul networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.