Abstract

This paper presents a robust time delay estimation algorithm for the α-stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise’s characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.