Abstract

In this research, a bi-objective model is developed to deal with a supply chain including multiple suppliers, multiple manufacturers, and multiple customers, addressing a multi-site, multi-period, multi-product aggregate production planning (APP) problem. This bi-objective model aims to minimize the total cost of supply chain including inventory costs, manufacturing costs, work force costs, hiring, and firing costs, and maximize the minimum of suppliers' and producers' reliability by the considering probabilistic lead times, to improve the performance of the system and achieve a more reliable production plan. To solve the model in small sizes, a e-constraint method is used. A numerical example utilizing the real data from a paper and wood industry is designed and the model performance is assessed. With regard to the fact that the proposed bi-objective model is NP-Hard, for large-scale problems one multi-objective harmony search algorithm is used and its results are compared with the NSGA-II algorithm. The results demonstrate the capability and efficiency of the proposed algorithm in finding Pareto solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.