Abstract

In this paper, a new battery/ultracapacitor hybrid energy storage system (HESS) is proposed for electric drive vehicles including electric, hybrid electric, and plug-in hybrid electric vehicles. Compared to the conventional HESS design, which uses a larger dc/dc converter to interface between the ultracapacitor and the battery/dc link to satisfy the real-time peak power demands, the proposed design uses a much smaller dc/dc converter working as a controlled energy pump to maintain the voltage of the ultracapacitor at a value higher than the battery voltage for the most city driving conditions. The battery will only provide power directly when the ultracapacitor voltage drops below the battery voltage. Therefore, a relatively constant load profile is created for the battery. In addition, the battery is not used to directly harvest energy from the regenerative braking; thus, the battery is isolated from frequent charges, which will increase the life of the battery. Simulation and experimental results are presented to verify the proposed system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.