Abstract

We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and nonequilibrium parts. We also use a projection technique that allows us to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the nonequilibrium part. By using a suitable time semi-implicit discretization, our scheme is able to accurately approximate the solution in both kinetic and diffusion regimes. It is asymptotic preserving in the following sense: when the mean free path of the particles is small, our scheme is asymptotically equivalent to a standard numerical scheme for the limit diffusion model. A uniform stability property is proved for the simple telegraph model. Various boundary conditions are studied. Our method is validated in one-dimensional cases by several numerical tests and comparisons with previous asymptotic preserving schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.