Abstract

With the development of intelligent substations, inspection robots are widely used to ensure the safe and stable operation of substations. Due to the prevalence of grass around the substation in the external environment, the inspection robot will be affected by grass when performing the inspection task, which can easily lead to the interruption of the inspection task. At present, inspection robots based on LiDAR sensors regard grass as hard obstacles such as stones, resulting in interruption of inspection tasks and decreased inspection efficiency. Moreover, there are inaccurate multiple object-detection boxes in grass recognition. To address these issues, this paper proposes a new assistance navigation method for substation inspection robots to cross grass areas safely. First, an assistant navigation algorithm is designed to enable the substation inspection robot to recognize grass and to cross the grass obstacles on the route of movement to continue the inspection work. Second, a three-layer convolutional structure of the Faster-RCNN network in the assistant navigation algorithm is improved instead of the original full connection structure for optimizing the object-detection boxes. Finally, compared with several Faster-RCNN networks with different convolutional kernel dimensions, the experimental results show that at the convolutional kernel dimension of 1024, the proposed method in this paper improves the mAP by 4.13% and the mAP is 91.25% at IoU threshold 0.5 in the range of IoU thresholds from 0.5 to 0.9 with respect to the basic network. In addition, the assistant navigation algorithm designed in this paper fuses the ultrasonic radar signals with the object recognition results and then performs the safety judgment to make the inspection robot safely cross the grass area, which improves the inspection efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.