Abstract

PurposeThe purpose of this paper is to present a new approximate analytical procedure to obtain dual solutions of nonlinear differential equations arising in mixed convection flow in a semi-infinite domain. This method, which is based on Padé-approximation and homotopy–Padé technique, is applied to a model of magnetohydrodynamic Falkner–Skan flow as well. These examples indicate that the method can be successfully applied to solve nonlinear differential equations arising in science and engineering.Design/methodology/approachHomotopy–Padé method.FindingsThe main focus of the paper is on the prediction of the multiplicity of the solutions, however we have calculated multiple (dual) solutions of the model problem namely, mixed convection heat transfer in a porous medium.Research limitations/implicationsThe authors conjecture here that the combination of traditional–Pade and Hankel–Pade generates a useful procedure to predict multiple solutions and to calculate prescribed parameter with acceptable accuracy as well. Validation of this conjecture for other further examples is a challenging research opportunity.Social implicationsDual solutions of nonlinear differential equations arising in mixed convection flow in a semi-infinite domain.Originality/valueIn this study, the authors are using two modified methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.