Abstract
<span lang="EN-US">The premature convergence of the simulated annealing algorithm, to solve many complex problems of artificial intelligence, refers to a failure mode where the process stops at a stable point that does not represent to an overall solution. Accelerating the speed of convergence and avoiding local solutions is the concern of this work. To overcome this weakness in order to improve the performance of the solution, a new hybrid approach is proposed. The new approach is able to take into consideration the state of the system during convergence via the use of Hopfield neural networks. To implement the proposed approach, the problem of maximum constraint satisfaction is modeled as a quadratic programming. This problem is solved via the use of the new approach. The approach is compared with other methods to show the effectiveness of the proposed approach.</span>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.