Abstract

Lead in drinking water continues to put children at risk of irreversible neurological impairment. Understanding drinking water system characteristics that influence blood lead levels is needed to prevent ongoing exposures. This study sought to assess the relationship between children's blood lead levels and drinking water system characteristics using machine-learned Bayesian networks. Blood lead records from 2003 to 2017 for 40,742 children in Wake County, North Carolina were matched with the characteristics of 178 community water systems and sociodemographic characteristics of each child's neighborhood. Bayesian networks were machine-learned to evaluate the drinking water variables associated with blood lead levels ≥2μg/dL and ≥5μg/dL. The model was used to predict geographic areas and water utilities with increased lead exposure risk. Drinking water characteristics were not significantly associated with children's blood lead levels ≥5μg/dL but were important predictors of blood lead levels ≥2μg/dL. Whether 10% of water samples exceeded 2ppb of lead in the most recent year prior to the blood test was the most important water system predictor and increased the risk of blood lead levels ≥2μg/dL by 42%. The model achieved an area under the receiver operating characteristic curve of 0.792 (±0.8%) during ten-fold cross validation, indicating good predictive performance. Water system characteristics may thus be used to predict areas that are at risk of higher blood lead levels. Current drinking water regulatory thresholds for lead may be insufficient to detect the levels in drinking water associated with children's blood lead levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.