Abstract

This paper offers a reliable solution to the detection of broken rotor bars in induction machines with a novel methodology, which is based on the fact that the fault-related harmonics will have oscillating amplitudes due to the speed ripple effect. The method consists of two main steps: Initially, a time-frequency transformation is used and the focus is given on the steady-state regime; thereupon, the fault-related frequencies are handled as periodical signals over time and the classical fast Fourier transform is used for the evaluation of their own spectral content. This leads to the discrimination of subcomponents related to the fault and to the evaluation of their amplitudes. The versatility of the proposed method relies on the fact that it reveals the aforementioned signatures to detect the fault, regardless of the spatial location of the broken rotor bars. Extensive finite element simulations on a 1.1 MW induction motor and experimental testing on a 1.1 kW induction motor lead to the conclusion that the method can be generalized on any type of induction motor independently from the size, power, number of poles, and rotor slot numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.