Abstract

Low protein digestibility and lysine content of white sorghum grain limit its use as a foodstuff. The increase in γ-kafirin cross-linking, has an important role in the reduction of protein digestibility. The objective of this study was to characterize the γ-kafirin gene in 12 Mexican tannin-free white sorghum genotypes and its relationship with protein digestibility and lysine content. Two alleles of γ-kafirin gene were identified: alleles 1 and 7. The predicted amino acid sequence of allele 7 showed seven point mutations; six were silent, and one missense (C235G), causing the substitution P79A in the deduced amino acid sequence. In silico analysis showed that γ-kafirin codified by allele 1 has five α-helixes without disulfide bonds, while γ-kafirin coding by allele 7 has four α-helixes and three disulfide bonds. Genotypes with allele 7 had higher lysine content than those with allele 1, showing no differences in the kafirin electrophoretic profile, neither a correlation with the protein content nor the in vitro pepsin digestibility. Mexican tannin-free white sorghum genotypes showed two γ-kafirin alleles, 1 and 7. Allele 7 was associated with higher lysine content; in silico analysis showed that the substitution of P79A in this allele could modify γ-kafirin secondary structure. © 2015 Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.