Abstract

Ill-posedness of GNSS-based ionospheric tomography affects the stability and the accuracy of the inversion results. Truncated singular value decomposition (TSVD) is a common algorithm of ionospheric tomography reconstruction. However, the TSVD method usually has low inversion accuracy and reconstruction efficiency. To resolve the above problem, a truncated mapping singular value decomposition (TMSVD) algorithm is presented to improve the reconstructed accuracy and computational efficiency. To authenticate the effectiveness and the advantages of the TMSVD algorithm, a numerical test scheme is devised. Finally, ionospheric temporal–spatial variations of the selected reconstructed region are studied using the GNSS observations under different geomagnetic conditions. The reconstructed results of TMSVD can accurately reflect semiannual anomalies, diurnal variations, and geomagnetic storm effects. In contrast with the ionosonde data, it is found that the reconstructed profiles of the TMSVD method are more consistent with than those of the IRI 2016. The study suggests that TMSVD is an efficient algorithm for the tomographic reconstruction of ionospheric electron density (IED).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.