Abstract
A Neural integrated Fuzzy conTroller (NiF-T) which integrates the fuzzy logic representation of human knowledge with the learning capability of neural networks is developed for nonlinear dynamic control problems. NiF-T architecture comprises of three distinct parts: (1) Fuzzy logic Membership Functions (FMF), (2) a Rule Neural Network (RNN), and (3) an Output-Refinement Neural Network (ORNN). FMF are utilized to fuzzify sensory inputs. RNN interpolates the fuzzy rule set; after defuzzification, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line to fine-tune the controller. In this paper, real-time implementations of autonomous mobile robot navigation and multirobot convoying behavior utilizing the NiF-T are presented. Only five rules were used to train the wall following behavior, while nine were used for the hall centering. Also, a robot convoying behavior was realized with only nine rules. For all of the described behaviors-wall following, hall centering, and convoying, their RNN's are trained only for a few hundred iterations and so are their ORNN's trained for only less than one hundred iterations to learn their parent rule sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.