Abstract
Abstract The purpose of this paper is to evaluate a new operational procedure to produce half-hourly rainfall estimates at 0.1° spatial resolution. Rainfall is estimated using a neural networks (NN)–based approach utilizing passive microwave (PMW) and infrared satellite measurements. Several neural networks are tested, from multilayer perceptron to adaptative resonance theory architectures. The NN analytical selection process is explained. Half- hourly rain gauge data over Andalusia, Spain, are used for validation purposes. Several interpolation procedures are tested to transform point to areal measurements, including the maximum entropy estimation method. Rainfall estimations are also compared with Geostationary Operational Environmental Satellite precipitation index and histogram-matching results. Half-hourly rainfall estimates give ∼0.6 correlations with PMW data (∼0.2 with gauge), and average correlations of up to 0.7 and 0.6 are obtained for 0.5° and 0.1° monthly accumulated estimates, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.