Abstract
Human shape estimation has become increasingly important both theoretically and practically, for instance, in 3D mesh estimation, distance garment production and computational forensics, to mention just a few examples. As a further specialization, \emph{Human Body Dimensions Estimation} (HBDE) focuses on estimating human body measurements like shoulder width or chest circumference from images or 3D meshes usually using supervised learning approaches. The main obstacle in this context is the data scarcity problem, as collecting this ground truth requires expensive and difficult procedures. This obstacle can be overcome by obtaining realistic human measurements from 3D human meshes. However, a) there are no well established methods to calculate HBDs from 3D meshes and b) there are no benchmarks to fairly compare results on the HBDE task. Our contribution is twofold. On the one hand, we present a method to calculate right and left arm length, shoulder width, and inseam (crotch height) from 3D meshes with focus on potential medical, virtual try-on and distance tailoring applications. On the other hand, we use four additional body dimensions calculated using recently published methods to assemble a set of eight body dimensions which we use as a supervision signal to our Neural Anthropometer: a convolutional neural network capable of estimating these dimensions. To assess the estimation, we train the Neural Anthropometer with synthetic images of 3D meshes, from which we calculated the HBDs and observed that the network's overall mean estimate error is $20.89$ mm (relative error of 2.84\%). The results we present are fully reproducible and establish a fair baseline for research on the task of HBDE, therefore enabling the community with a valuable method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.