Abstract
ObjectivesThe authors present a method that focuses on cohort matching algorithms for performing patient-to-patient comparisons along multiple echocardiographic parameters for predicting meaningful patient subgroups. BackgroundRecent efforts in collecting multiomics data open numerous opportunities for comprehensive integration of highly heterogenous data to classify a patient's cardiovascular state, eventually leading to tailored therapies. MethodsA total of 42 echocardiography features, including 2-dimensional and Doppler measurements, left ventricular (LV) and atrial speckle-tracking, and vector flow mapping data, were obtained in 297 patients. A similarity network was developed to delineate distinct patient phenotypes, and then neural network models were trained for discriminating the phenotypic presentations. ResultsThe patient similarity model identified 4 clusters (I to IV), with patients in each cluster showed distinctive clinical presentations based on American College of Cardiology/American Heart Association heart failure stage and the occurrence of short-term major adverse cardiac and cerebrovascular events. Compared with other clusters, cluster IV had a higher prevalence of stage C or D heart failure (78%; p < 0.001), New York Heart Association functional classes III or IV (61%; p < 0.001), and a higher incidence of major adverse cardiac and cerebrovascular events (p < 0.001). The neural network model showed robust prediction of patient clusters, with area under the receiver-operating characteristic curve ranging from 0.82 to 0.99 for the independent hold-out validation set. ConclusionsAutomated computational methods for phenotyping can be an effective strategy to fuse multidimensional parameters of LV structure and function. It can identify distinct cardiac phenogroups in terms of clinical characteristics, cardiac structure and function, hemodynamics, and outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.