Abstract

Naturally occurring photonic crystal structures play an important role in different fields of application. Herein, we exploit the periodic pore pattern of a diatom frustule and demonstrate surface-enhanced Raman scattering (SERS) using its structure as a template for the SERS substrate. Gold nanoparticles (AuNPs) were initially allowed to self-assemble on the surface and inside the pores of the diatoms. The enhancement in the localized surface plasmon resonance (LSPR) field magnitude for the assembled AuNPs on the diatom frustule were studied using simulation software. For the proposed SERS substrate, an average field enhancement of the order of 108 magnitude was observed. We demonstrate the operation of the designed substrate for the detection and quantification of Raman signals from two Raman active samples, namely malachite green (MG) and fluoride concentrations in drinking water. Using the proposed SERS substrate, an MG concentration as low as 1 nM with a relative standard deviation (RSD) of 7.57% and a fluoride concentration of 100 nM with an RSD of 17.26% could be measured with the Raman spectrometer. We envision that the proposed technique could emerge as an inexpensive alternative fabrication method of SERS substrates which can produce an enhanced LSPR field magnitude and scatter intense Raman signals from Raman active samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.