Abstract

A nanonewton force facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, for the measurement of horizontal forces in the range below 1 µN, is presented. It consists of a measuring system and an identical reference system. Recent experiments with the nanonewton force facility have achieved agreement between an electrostatic force and a gravitational force of 80 nN with an uncertainty of less than 3%. A novel method for measurements of the air (vacuum) permittivity at zero frequencies by means of the nanonewton force facility is presented. First measurements in air show a permittivity of the air ε ≈ 8.71 × 10−12 F m−1 with an uncertainty of 3%. From a theoretical analysis, it follows that this method can be used for the measurement of the vacuum permittivity ε0 at zero frequencies with a relative uncertainty of about 10−5. The precise measurement of the vacuum permittivity ε0 for an electrostatic field would be another test for the correctness of Maxwell's equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.