Abstract
Optical brain imaging has the potential for a bright future thanks to its low cost and portability relative to other biomedical imaging modalities. Temporal and spatial resolutions are considered to be the discriminatory features for selection of biomedical imaging equipment. Optical brain imaging systems, however, still face the bottleneck of limited spatial resolution. In this study, a novel method for guiding near infrared light at one of two particular gaps spaced nanometers apart has been presented. It includes the design of a nanogap nano-antenna for measurement of overlapping information on vicinities of only nanoscale separation distance, which could result in enhancement of the spatial resolution of optical brain imaging systems. The design of the proposed nano-gap nano-antenna channels near-infrared light to a specific path among two gaps separated by a nanometer-scale distance. A supportive analysis of gap design also is presented in this study. Additionally, the results of a comprehensive analysis of the behavior of light through the designed nano-gap nano-antenna are provided. The proposed methodology is a practical substitute for a high-density probe arrangement as well as a possible means of spatial resolution enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.