Abstract

ABSTRACTPoly(methyl methacrylate) (PMMA) based orthopaedic bone cements contain 1-3 Pim size radiopacifier particles. Incomplete dispersion of these particles leads to the presence of 50-200 μm size agglomerates. These large defects are sites of high-stress concentration that reduce the fracture toughness of PMMA. In this study, the micrometer-sized radiopacifying particles of a commercial bone cement were replaced by nanosized fillers. Both, commercial and nanocomposite PMMA bone cements were characterized using ultra-small angle x-ray scattering and low voltage scanning electron microscopy; mechanical properties were evaluated using ASTM standard tensile testing. The results showed a substantial reduction of particle agglomerate size and a significant increase in tensile properties of the nanocomposite over that of the standard microcomposite bone cement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.