Abstract

Mapping neural circuits can be accomplished by labeling a small number of neural structures per brain, and then combining these structures across multiple brains. This sparse labeling method has been particularly effective in Drosophila melanogaster, where clonally related clusters of neurons derived from the same neural stem cell (neuroblast clones) are functionally related and morphologically highly stereotyped across animals. However identifying these neuroblast clones (approximately 180 per central brain hemisphere) manually remains challenging and time consuming. Here, we take advantage of the stereotyped nature of neural circuits in Drosophila to identify clones automatically, requiring manual annotation of only an initial, smaller set of images. Our procedure depends on registration of all images to a common template in conjunction with an image processing pipeline that accentuates and segments neural projections and cell bodies. We then measure how much information the presence of a cell body or projection at a particular location provides about the presence of each clone. This allows us to select a highly informative set of neuronal features as a template that can be used to detect the presence of clones in novel images. The approach is not limited to a specific labeling strategy and can be used to identify partial (e.g., individual neurons) as well as complete matches. Furthermore this approach could be generalized to studies of neural circuits in other organisms.

Highlights

  • How the nervous system processes sensory information and generates behavior critically depends on its underlying circuitry

  • We used cross-validation to test our procedure on a set of 350 images of male Drosophila brains

  • In this study, we have described how one can speed up the identification of Drosophila neuroblast clones in large datasets

Read more

Summary

Introduction

How the nervous system processes sensory information and generates behavior critically depends on its underlying circuitry. Mapping this circuitry (and understanding its developmental origins) is a major challenge in neuroscience, and there are currently two distinct approaches to the problem. Dense reconstruction, involves labeling many neural structures in a single brain, and resolving these structures using electron microscopy (Briggman and Denk, 2006). The second approach, sparse labeling, involves labeling few neural structures in a single brain which can be subsequently resolved using light microscopy (e.g., Otsuna and Ito, 2006; Jefferis et al, 2007; Lin et al, 2007). By imaging many sparsely labeled brains, one can piece together the neural circuitry

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.