Abstract

A number of cytokines that finely regulate immune response have been implicated in the pathogenesis or protection of type 1 diabetes and other autoimmune diseases. It is, therefore, of pivotal importance to examine a family of proteins that serve as signal transducers and activators of transcription (STATs), which regulate the transcription of a variety of cytokines. We report here a defective gene (Stat5b) located on chromosome 11 within a previously mapped T1D susceptibility interval (Idd4) in the nonobese diabetic (NOD) mice. Our sequencing analysis revealed a unique mutation C1462A that results in a leucine to methionine (L327M) in Stat5b of NOD mice. Leu(327), the first residue in the DNA binding domain of STAT proteins, is conserved in all identified mammalian STAT proteins. Homology modeling predicted that the mutant Stat5b has a weaker DNA binding, which was confirmed by DNA-protein binding assays. The inapt transcriptional regulation ability of the mutated Stat5b is proved by decreased levels of RNA of Stat5b-regulated genes (IL-2Rbeta and Pim1). Consequently, IL-2Rbeta and Pim1 proteins were shown by Western blotting to have lower levels in NOD compared with normal B6 mice. These proteins have been implicated in immune regulation, apoptosis, activation-induced cell death, and control of autoimmunity. Therefore, the Stat5b pathway is a key molecular defect in NOD mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.