Abstract

Objective. Musculoskeletal model (MM) driven by electromyography (EMG) signals has been identified as a promising approach to predicting human motions in the control of prostheses and robots. However, muscle excitations in MMs are generally derived from the EMG signals of the targeted sensor covering the muscle, inconsistent with the fact that signals of a sensor are from multiple muscles considering signal crosstalk in actual situation. To identify more accurate muscle excitations for MM in the presence of crosstalk, we proposed a novel excitation-extracting method inspired by muscle synergy for simultaneously estimating hand and wrist movements. Approach. Muscle excitations were firstly extracted using a two-step muscle synergy-derived method. Specifically, we calculated subject-specific muscle weighting matrix and corresponding profiles according to contributions of different muscles for movements derived from synergistic motion relation. Then, the improved excitations were used to simultaneously estimate hand and wrist movements through musculoskeletal modeling. Moreover, the offline comparison among the proposed method, traditional MM and regression methods, and an online test of the proposed method were conducted. Main results. The offline experiments demonstrated that the proposed approach outperformed the EMG envelope-driven MM and three regression models with higher R and lower NRMSE. Furthermore, the comparison of excitations of two MMs validated the effectiveness of the proposed approach in extracting muscle excitations in the presence of crosstalk. The online test further indicated the superior performance of the proposed method than the MM driven by EMG envelopes. Significance. The proposed excitation-extracting method identified more accurate neural commands for MMs, providing a promising approach in rehabilitation and robot control to model the transformation from surface EMG to joint kinematics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.