Abstract

AbstractIn this paper, we introduce the multi-variate spectral quasi-linearization method which is an extension of the previously reported bivariate spectral quasi-linearization method. The method is a combination of quasi-linearization techniques and the spectral collocation method to solve three-dimensional partial differential equations. We test its applicability on the (2 + 1) dimensional Burgers’ equations. We apply the spectral collocation method to discretize both space variables as well as the time variable. This results in high accuracy in both space and time. Numerical results are compared with known exact solutions as well as results from other papers to confirm the accuracy and efficiency of the method. The results show that the method produces highly accurate solutions and is very efficient for (2 + 1) dimensional PDEs. The efficiency is due to the fact that only few grid points are required to archive high accuracy. The results are portrayed in tables and graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.