Abstract
Tree–seed algorithm is a stochastic search algorithm with superior performance suitable for solving continuous optimization problems. However, it is also prone to fall into local optimum and slow in convergence. Therefore, this paper proposes an improved tree–seed algorithm based on pattern search, dimension permutation, and elimination update mechanism (PDSTSA). Firstly, a global optimization strategy based on pattern search is used to promote detection ability. Secondly, in order to maintain the diversity of the population, a random mutation strategy of individual dimension replacement is introduced. Finally, the elimination and update mechanism based on inferior trees is introduced in the middle and later stages of the iteration. Subsequently, PDSTSA is compared with seven representative algorithms on the IEEE CEC2015 test function for simulation experiments and convergence curve analysis. The experimental results indicate that PDSTSA has better optimization accuracy and convergence speed than other comparison algorithms. Then, the Wilcoxon rank sum test demonstrates that there is a significant difference between the optimization results of PDSTSA and each comparison algorithm. In addition, the results of eight algorithms for solving engineering constrained optimization problems further prove the feasibility, practicability, and superiority of PDSTSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.