Abstract

Accurate estimation of lithium-ion batteries' state of charge (SOC) is the key to the battery management system (BMS). A multi-scale fractional-order dual unscented Kalman filter is proposed to promote the accuracy of the battery SOC estimation. First, a fractional-order model (FOM) based on the fractional calculus theory is proposed to represent the characteristics of lithium-ion batteries. Its parameters are identified by the adaptive genetic algorithm (AGA). The Root Mean Square Error (RMSE) of the model is less than 5 mV under test conditions. Then, a multi-scale fractional-order dual unscented Kalman filter (FODUKF) is developed and employed to achieve the parameter and SOC joint estimation regarding the slow variation of battery parameter and fast variation of battery SOC. Finally, the experimental data acquired from the BTS-2000 based battery test platform have verified the effectiveness of the method. The accuracy and robustness of the proposed methods are shown by comparing the results computed by different unscented Kalman filter (UKF) approaches. The RMSE and average estimation errors of battery SOC are controlled within the range of 1%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.