Abstract

This report provides an example of how a single source of contamination could potentially contribute to all routes of exposure. A modeling approach was used to estimate multiple exposure routes in an attempt to assess the health significance of gasoline-contaminated drinking water supplies. This model consisted of a two-compartment, indoor air quality equation that calculates the contribution made by ambient and indoor air contaminated by a pollutant volatilized from drinking water to that pollutant's inhalation burden. In addition, the model uses the traditional equations for assessing a pollutant's oral and dermal burdens. Benzene, toluene and xylene were used as surrogates for gasoline contamination to determine the contribution of contaminated water to adult and child body burdens from indoor air, oral (drinking water and food) and dermal exposure routes. The contribution thus calculated for each chemical was compared to the EPA's Office of Drinking Water Health Advisories. In terms of acute exposure, the use of chemically contaminated water for showering purposes may generate vapor in the confined area of the bathroom at levels sufficient to cause or contribute to mucous tissue irritation, as commonly reported in affected homes. High temperatures and humidity may also contribute to these effects, especially in the bathroom. In terms of chronic exposure, the use of chemically contaminated water at EPA-recommended guideline amounts in an affected home may result in inhalation, oral and dermal exposures leading to cumulative doses exceeding adult and child total daily body burdens based on EPA's Health Advisories. Thus, this model indicates that the traditional standard/guidelines derivation processes should be reevaluated to consider the pollutant contribution from multiple routes of exposure. The New Jersey Departments of Health and Environmental Protection conducted a study in which concentrations of several pollutants including benzene in the breathing zone were measured during a 15-minute shower in homes with contaminated water. The findings suggest that the air quality model used in the present study may satisfactorily predict the airborne concentrations of pollutants in, at least, the bathroom after showering with contaminated water (Pearson rank correlation coefficient of 0.773 with p = 0.0012 for n = 14). The findings of the present study support the use of an adjustment factor for all exposure durations to account for exposures to other sources of the contaminant, i.e., urban, occupational, and food. A value of 20% seems appropriate based on the study's findings.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.