Abstract

A contract for multipole superconducting wiggler design and fabrication between The University of Saskatchewan and Budker Institute of Nuclear Physics was signed in October 2003. A wiggler with the photons energy range 4 to 40 keV, the maximum field 1.9 T, and the period length as small as possible was required for the micro-XAFS beamline. In 2004 the 2 T 63-pole superconducting wiggler with the average period length 34 mm was fabricated in BINP. To eliminate the undulator-type spectrum, the periodicity of the wiggler was broken. A new approach to the cryostat design enabled long-time (up to 6 months) machine operation without liquid helium refilling (LHe consumption <0.03 l/h). After successful tests the wiggler was installed on the Canadian Light Source (CLS) storage ring with the energy 2.9 GeV in January 2005. The main parameters of the magnet and the cryogenic systems, as well as magnet measurements data, cryogenic system test data, and experimental results during machine operation on the CLS storage ring are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.