Abstract

To detect redox potential and pH simultaneously in rat joints, a surface-enhanced Raman scattering (SERS)-active microneedle was structured with two separate grooves containing redox-sensitive and pH-sensitive SERS probes, respectively. The multiplexed SERS-active microneedles brought the two SERS probes into muscles with minimal invasion to sense their redox status and pH in 5 min, and they also detected the dynamical evolution of redox status and pH in muscles. The multiplexed SERS-active microneedles were also inserted into rat joints to sense their redox status and pH, which lack flowable fluids. The strategy of one SERS probe in one groove would allow SERS-active microneedles to become a multiplexed analytical tool for minimally invasive sampling in vivo and direct Raman detection ex vivo, and the multiplexed SERS-active microneedles would become a versatile analytical tool to promote research in biomedicines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.