Abstract
The food grain supply chain problem of the Public Distribution System (PDS) of India is addressed in this paper to satisfy the demand of the deficit Indian states. The problem involves the transportation of bulk food grain by capacitated vehicles from surplus states to deficit states through silo storage. A mixed integer non-linear programming (MINLP) model is formulated which seeks to minimize the overall cost including bulk food grain shipment, storage, and operational cost. The model incorporates the novel vehicle preference constraints along with the seasonal procurement, silo storage, vehicle capacity and demand satisfaction restrictions. The management of Indian food grain supply chain network is more intricate and difficult issue due to many uncertain interventions and its chaotic nature. To tackle the aforementioned problem an effective meta-heuristic which based on the strategy of sorting elite ants and pheromone trail updating called Improved Max-Min Ant System (IMMAS) is proposed. The solutions obtained through IMMAS is validated by implementing the Max-Min Ant System (MMAS). A sensitivity analysis has been performed to visualize the effect of model parameters on the solution quality. Finally, the statistical analysis is carried out for confirming the superiority of the proposed algorithm over the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.