Abstract
Recently there has been much interest in simulating ion transport in biological and synthetic ion channels using the Poisson-Nernst-Planck (PNP) equations. However, many published methods exhibit poor convergence rates, particularly at high driving voltages, and for long-aspect ratio channels. The paper addresses the development of a fast and efficient coupled multigrid method for the solution of the PNP equations. An unstructured cell-centered finite volume method is used to discretize the governing equations. An iterative procedure, based on a Newton-Raphson linearization accounting for the non-linear coupling between the Poisson and charge transport equations, is employed. The resulting linear system of equations is solved using an algebraic multigrid method, with coarse level systems being created by agglomerating finer-level equations based on the largest coefficients of the Poisson equation. A block Gauss-Seidel update is used as the relaxation method. The method is shown to perform well for ion transport in a synthetic channel for aspect ratios ranging from 16.67 to 1667 for a range of operating parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.