Abstract
Attention mechanisms in deep learning can focus on critical features and ignore irrelevant details in the target task. This paper proposes a new multi-grained attention model (MGAN) to extract parts from images. The model includes a multi-grain spatial attention (MSA) mechanism and a multi-grain channel attention (MCA) mechanism. We use different convolutional branches and pooling layers to focus on the crucial information in the sample feature space and extract richer multi-grain features from the image. The model uses ResNet and Res2Net as the backbone networks to implement the image classification task. Experiments on the CIFAR10/100 and Mini-Imagenet datasets show that the proposed model MGAN can better focus on the critical information in the sample feature space, extract richer multi-grain features from the images, and significantly improve the image classification accuracy of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ECTI Transactions on Computer and Information Technology (ECTI-CIT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.