Abstract

AbstractRheumatoid arthritis (RA) is a debilitating autoimmune disease that causes chronic pain and serious complications, presenting a significant challenge to treat. Promising approaches for treating RA involve signaling pathways modulation and targeted therapy. To this end, a multifunctional nanosystem, TPC‐U@HAT, has been designed for RA therapy, featuring multitargeting, dual‐stimuli response, and on‐demand drug release capabilities. TPC‐U@HAT is composed of a probe/prodrug TPC, a JAK1 kinase inhibitor upadacitinib, and the drug carrier HAT. TPC is composed of an aggregation‐induced emission (AIE)‐active NIR‐II chromophore TPY and an NF‐κB/NLRP3 inhibitor caffeic acid phenethyl ester (CAPE), connected via boronic ester bond which serves as the reactive‐oxygen‐species‐responsive linker. The carrier, HAT, is created by grafting bone‐targeting alendronate and hydrophobic tocopheryl succinate onto hyaluronic acid chains, which can encapsulate TPC and upadacitinib to form TPC‐U@HAT. Upon intravenous injection into mice, TPC‐U@HAT accumulates at inflamed lesions of RA through both active and passive targeting, and the overexpressed hyaluronidase and H2O2 therein cleave the hyaluronic acid polymer chains and boronate bonds, respectively. This generates an AIE‐active chromophore for detection and therapeutic evaluation of RA via both optoacoustic imaging and NIR‐II fluorescent imaging and concomitantly releases CAPE and upadacitinib to exert efficacious therapy by inhibiting NF‐κB/NLRP3 and JAK‐STAT pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.