Abstract

Xantholipin and several related polycyclic xanthone antibiotics feature a unique xanthone ring nucleus within a highly oxygenated, angular, fused hexacyclic system. In this study, we demonstrated that a flavin-dependent monooxygenase (FMO) XanO4 catalyzes the oxidative transformation of an anthraquinone to a xanthone system during the biosynthesis of xantholipin. Invitro isotopic labeling experiments showed that the reaction involves sequential insertion of two oxygen atoms, accompanied by an unexpected cryptic demethoxylation reaction. Moreover, characterizations of homologous FMOs of XanO4 suggested the generality of the XanO4-like-mediated reaction for the assembly of a xanthone ring in the biosynthesis of polycyclic xanthone antibiotics. These findings not only expand the repertoire of FMO activities but also reveal a novel mechanism for xanthone ring formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.