Abstract

Printable mesoscopic perovskite solar cells (PMPSCs) have exhibited great attractive prospects in the energy conversion field due to their high stability and potential scalability. However, the thick perovskite film in the mesoporous layers challenges the charge transportation and increase grain boundary defects, limiting the performance of the PMPSCs. It is critical not only to improve the electric property of the perovskite film but also to passivate the charge traps to improve the device performance. Herein we synthesized a bis-adduct 2,5-(dimethyl ester) C60 fulleropyrrolidine (bis-DMEC60) via a rational molecular design and incorporated it into the PMPSCs. The enhanced chemical interactions between perovskite and bis-DMEC60 improve the conductivity of the perovskite film as well as elevate the passivation effect of bis-DMEC60 at the grain boundaries. As a result, the fill factor (FF) and power conversion efficiency (PCE) of the PMPSCs containing bis-DMEC60 reached 0.71 and 15.21%, respectively, significantly superior to the analogous monoadduct derivative (DMEC60)-containing and control devices. This work suggests that fullerene derivatives with multifunctional groups are promising for achieving high-performance PMPSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.